

Highly efficient selection of tumor neoantigens improves therapeutic cancer vaccine efficacy

Michael F. Princiotta¹, Guilhem Richard¹, Leonard Moise^{2,3}, Matthew Ardito², Christine Boyle², Dominique Bridon¹, William D. Martin²,

Gad Berdugo¹, Anne S. De Groot^{1,2,3}

¹EpiVax Oncology, Inc., New York, NY, USA, ²EpiVax, Inc., Providence, RI, USA, ³University of Rhode Island, Providence, RI, USA

Overview

- Hypothesis: Accurately identifying effector (Teff) and excluding regulatory (Treg) neo-epitopes will help design more effective personalized cancer vaccines.
- Approach: A CT26 neoantigen-based vaccine was designed with AncerTM, an advanced neo-epitope screening platform that combines proprietary machine learning-based CD8 and CD4 epitope mapping tools with removal of inhibitory Treg epitopes.
- Results: 63% of neoantigens selected with Ancer™ were immunogenic.
- Our CT26 vaccine induced multifunctional CD8+ and CD4+ T cell responses.
- Our CT26 vaccine (monotherapy) reduced tumor burden by 45% and 38% compared to vehicle (poly-ICLC) at days 21 and 25, respectively.
- **Summary**: Ancer™ selects highly immunogenic neoantigens that substantially burden delivered reduce when tumor monotherapy.

Methods

- The CT26 mouse cell line exome and transcriptome were analyzed with the Ancer™ platform.
- Effector neoantigen sequences were identified and ranked based on their MHC Class I and MHC Class II immunogenicity while avoiding the inclusion of inhibitory sequences.
- sequences were synthesized as peptides (AncerTM-CT26 vaccine) and their immunogenicity and efficacy were tested in naïve and CT26 tumor bearing BALB/c mice, respectively.

Efficacy protocol

IFN_γ ELISpot stimulation: Ancer™-CT26 pool and individual peptides

Flow Cytometry: Ancer[™]-CT26 pool

Mutanome-Directed Cancer Immunotherapy Based on 20 Years of Experience in Epitope Mapping

Ancer[™]-selected CT26 neoantigens induce highly immunogenic responses and reduce tumor burden

Flow Cytometry

Immunogenicity Efficacy

Immunogenicity rate compared to other published work

Nature 2015

High rate of immunogenicity

Multifunctional CD4+/CD8+ response

Tumor Burden

Day 21 Day 25 Tumor reduction Ancer™ vs PBS 36% Ancer™ vs poly-ICLC

Significant reduction of tumor burden

• The AncerTM-CT26 vaccine generated T cell responses, as measured by IFN_γ production, against **13 of 20 (63%)** neoantigens targeted by the vaccine.

Non-immunogenic neoantigens

Immunogenic neoantigens

• AncerTM-CT26 generates both CD4⁺ and CD8⁺ multifunctional T cell responses, as measured by IFNγ, TNFα, and IL2 production.

 Ancer[™]-CT26 peptide vaccination poly-ICLC controls tumor growth as a monotherapy in the implantable CT26 murine tumor model.

Conclusions

- EpiVax's immunogenicity screening tools (EpiMatrix® and JanusMatrix™) are integrated into the Ancer™ platform for streamlined designs of personalized cancer vaccines. Analysis of the MHC- and TCR-facing residues of T cell epitopes by JanusMatrix™ enables prediction of epitope phenotype.
- The CT26 mutanome was analyzed with Ancer™ in order to design a CT26 neoantigen-based vaccine (Ancer™-CT26).
- 68% of sequences that compose Ancer™-CT26 induced IFN_γ production in naïve animals. Ancer™-CT26 induced both multifunctional CD8+ and CD4+ T cell responses.
- Ancer™-CT26 reduced tumor burden up to 45% compared to vehicle (poly-ICLC) when tested in an efficacy study with CT26 tumor bearing animals.
- Ancer[™] selects neoantigens that can drive immunogenic and effector responses.

References and Acknowledgments

- Moise L. et al., iVAX: An integrated toolkit for the selection and optimization of antigens and the design of epitope-driver vaccines. Hum Vaccin Immunother. 2015;11(9):2312-21.
- 2) Liu R. et al., H7N9 T-cell epitopes that mimic human sequences are less immunogenic and may induce Treg-mediated
- tolerance, Hum Vaccin Immunother. 2015 11:9, 2241-2252
- 3) Wada Y. et al., A humanized mouse model identifies key amino acids for low immunogenicity of H7N9 vaccines. Sci Rep. 2017
- 4) Richard G. et al., Filtering out self-like neoantigens improves immune response to cancer vaccines. Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA
- Some icons used in this poster were made by Freepik from www.flaticon.com and are licensed by CC 3.0 BY.

